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Almtract---Fabric transitions can arise in materials such as quartz in which more than one set of symmetrically 
equivalent glide systems must be considered. The external conditions, such as temperature and stress, affect the 
relative ability of different mechanisms to operate. Adopting the Taylor-Bishop--Hill analysis allows an 
approxlmR~ion to the resulting effects in the choice of critical resolved shear stress (CRSS) values for glide on the 
different dislocation systems. Different CRSS values may be appropriate to simulating fabric development in 
different deformatienal environments. 

For any specific set of CRSS values, for a particular deformation, a set of reorientation trajectories can be 
defined for differently oriented crystals with respect to the instantaneous stretchino axes. There is a basic number 
of pattern types, and deformation leads to e-axes populating specific end-orientations. 

The CRSS values on different glide systems can vary smoothly relative to one another, but abrupt changes 
result in the deformation fabrics at critical CRSS ratios. Quartz fabrics may thus be used to delineate regions 
subjected to particular conditions of temperature and strain-rate in deformed metamorphic terrains, provided 
that allowance can be made for other factors such as trace impurity content of quartz. 

INTRODUCTION 

IT IS WELL established that a polycrystalline material of a 
given type can develop different preferred crystallo- 
graphic orientations when deformed under different 
circumstances even though the deformation is the same. 
For example, cold-rolled face-centred-cubic metals 
have two distinctive deformation fabrics, which can be 
designated as copper-type and brass-type; a change 
from one type to the other, often through transitional 
types, can occur as a result of a change in temperature of 
deformation (e.g. Hu & Goodman 1963, for copper), 
strain rate (Leffers 1968) or composition (Merlini & 
Beck 1955, for zinc content in brass) (Fig. 1). Similarly, 
Tullis et al. (1973) have shown that the experimental 
deformation of quartzite at relatively low temperatures 
or high strain rates gives rise to a fabric with a c-axis 
maximum parallel to the axis of shortening, and that 
there is a transition from this fabric to small-circle girdle 
fabrics as the temperature increases or strain rate 
decreases; both types of fabric are clearly attributable to 
deformation even though recrystallization appears at 
higher temperatures. 

Geologists have also long been aware that in tectonic 
belts, where there is much evidence for the rocks having 
been plastically deformed, quartzites exhibit many dis- 
tinctly different types of preferred crystallographic 
orientation (Sander 1950, Sahama 1936, Hietanen 
1938, Fairbairn 1949, Turner & Weiss 1963, Hobbs et 

al. 1976). Many of these fabrics are thought to result 
directly from deformation and it is of interest to establish 
the factors that determine which particular deformation 

fabric will develop in specific situations. The experi- 
ments of Tullis et  al. (1973) show that, even if the 
imposed deformation is the same, different conditions of 
temperature and strain rate can lead to different fabrics. 
It seems likely that an identical situation would hold in 
nature. It is therefore potentially of considerable 
geological importance to understand how different 
deformation fabrics can arise from the same type of 
deformation and to relate this to environmental vari- 
ables. 

The reasons for these various fabric transitions have 
not yet been clearly demonstrated. However, in 
deformation fabrics arising from the rotations of 
crystallographic axes accompanying dislocation glide 
within the grains, a factor of likely importance is a 
change in the preferred glide systems. A similar effect, 
involving the occurrence of {111} <112> deformation 
twinning as an alternative to the usual { 111} < 110 > slip, 
appears to underlie the copper to brass-type fabric 
transition in face-centred-cubic metals, and this idea is 
supported by the computer simulation study of Kallend 
& Davies (1972). 

The present paper sets out in general terms how, on 
the basis of the predictions of the Taylor-Bishop--Hill 
model, change in the preferred glide systems would give 
rise to differences in preferred crystallographic orienta- 
tion under the same deformation; it then presents 
simulations of some of the numerous transitions that 
could arise in quartzites as a result of changes in the rela- 
tive ease of glide on the many known glide systems of 
quartz and, briefly, considers possible geological 
implications. 
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Fig. 1. (a), (b), & (c) are ( 111 ) pole figures illustrating the copper-brass fabric transition as a function of Zn-contem (after 
Merlini & Beck 1955 ). The transition also takes place as a function of temperature and strain-rate. Shortening axis is vertical 

and the rolling direction (RD) is north-south. Rolling gives appro~mately plane strain. 

THE TAYLOR-BISHOP-HILL MODEL AND 
FABRIC TRANSITIONS 

A previous paper (Lister et al. 1978) critically reviews 
the Taylor-Bishop-Hill model for polycrystal behaviour 
and its use in simulating the development of preferred 
crystallographic orientation in polycryst~lline material 
undergoing dislocation glide within the. grains. In brief, 
the model assumes (a) that the deformation occurs 
within each grain and subgraln by a combination of 
interpenetrating glide processes, each glide system being 
represented by a simple shear; (b) that the gliding obeys 
a rigid-plastic flow law and (c) that the deformation is 
uniformly distributed. The nature of the fabric predicted 
to develop during a given imposed deformation is deter- 
mined by the choice of available glide systems and by the 
choice of the values of the critical resolved shear stresses 
needed for these glide systems to become active. 

Fabric transitions are therefore to be expected when 
the critical shear stresses on the glide systems change 
relative to each other sufficiently so that different 
combinations of glide systems can become active, 

The relative contribution of the various glide systems 
to the deformation is thereby changed, and this causes a 
modification to the fabric that is developed during a 
simulation. 

The critical resolved shear stress requirement for 
activity of a given glide system can be represented in 
stress space by a yield constraint hyperplane. When the 

yield constraints for all potential glide systems are consi- 
dered together, a yield surface is defined. This is a 
piecewise continuous convex tube or hyperprism 
bounding all possible stress states in a grain. Stress states 
outside the yield surface are impossible because of the 
rigid-plastic flow law, while stress states on the yield sur- 
face allow the material to undergo perfectly plastic flow. 
For stress states inside the yield surface the material is 
rigid. 

The Taylor and the Bishop--HiU analyses invoke 
optimiT~tion procedures to calculate which glide sys- 
tems will act in a specified deformation. The result of 
these optimizations is that the actual stress state control- 
ling the deformation lies at a vertex of the yield surface. 
Such vertices are defined, in general, by the intersection 
of the yield constraints for at least five independent glide 
systems (giving a vertex of rank 5). The stress states rep- 
resented by these vertices can activate only the glide sys- 
tems whose yield constraints intersect to form the ver- 
tices. 

Thus the vertices of the yield surface determine which 
combinations of glide systems can be simultaneously 
activated to allow deformation to take place. Note that 
in cases of special symmetry between deformation and 
crystal axes, stress states represented by vertices of 
lower rank than 5 may suffice to accomplish the 
deformation, using correspondingly fewer glide systems. 
Conversely, the vertices determine which mechanisms 
are excluded from operation because their yield con- 
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straints lie outside the yield surface, so that sufficiently 
high resolved shear stresses on the systems cannot be 
attained. The  vertices also determine which combina- 
tions of mechanisms cannot be activated, which is 
equally important.  

It is proposed that changes in the combinations of 
operat ive mechanisms can give rise to some of the fabric 
transitions observed in nature.  The  combinations of 
glide systems that may operate  simultaneously play a 
key role in determiuing the nature of a crystallographic 
fabric developed during a particular deformation his-  
tory. Thus, the configuration of the yield surface, which 
determines which combinations can operate,  is the most 
important  factor in simulations of fabric development.  If 
a change takes place in the configuration of the yield 
surface then a change will take place in the simulated 
fabric for  a particular deformation history. This 
behaviour  can be modelled by observing fabric transi- 
tions induced because of changes in the yield surface 
configurations for hypothetical quartzites, the plastic 
deformation of which is simulated in the computer.  

This work considers fabrics produced by the simulated 
deformation of several of these hypothetical model  
quartzites, be~nning  in each case with an initial orienta- 
tion populat ion that is randomly distributed. Only c-axis 
fabrics are documented  in the paper  and additional data 
f rom selected examples will be presented elsewhere. 

The  distance f rom the origin of a particular yield con- 
straint is determined by the relevant yield stress. Sup- 
pose that  a set of critical yield stresses has been specified 
and that they are such as to prevent  a particular 
mechanism set f rom becoming active because the 
respective yield constraints are excluded from the yield 
surface. Then,  suppose that the particular yield stress is 
decreased continuously. At  a certain value the con- 
straints intersect the yield surface. This gives a change in 
the topological configuration of its vertices, and mere- 

hers of the formerly excluded mechanism set can now be 
activated. 

As the yield stress for  the particular set is further 
reduced, discontinuous modifications to the yield sur- 
face configuration continue to take place. Vertices may 
disappear, or be modified, or new vertices appear  as the 
yield constraints move toward the origin. Eventually the 
yield constraint ceases to cause changes in the yield sur- 
face configuration, no mat ter  how small the relative 
yield stress becomes (Fig. 2). 

Configuration changes occur abruptly at certain ratios 
of the critical shear stresses of the potential glide sys- 
tems. The  set of vertices in each yield surface can be said 
to define topologically a specific yield surface configura- 
tion. There  will therefore  be a finite number  of possible 
yield surface configurations, limited by the possible 
number  of such subsets in the total set of all possible 
glide systems; in each case, the glide systems not 
included in the subset of active ones are those where 
yield constraint surfaces fall entirely outside the par- 
ticular yield surface defined by the subset. 

Figure 2 illustrates a change in yield surface 
configuration involving a substantial relative shift in a 
yield constraint as a result of unspecified change in 
environmental  factors between the situations depicted 
in Figs. 2(a) and (b); in this case there is a transition from 
a yield surface having vertices defined by the yield con- 
straint intersections A, B and C to one defined by A, B, 
E a n d D .  

It is important  to realize that these changes of 
configurations occur abruptly, although the critical yield 
values may vary smoothly. Furthermore,  the changes in 
configuration may have minor or major  effects on fabric 
development.  If the change in yield surface configura- 
tion does not  greatly affect the relative activities on  var- 
ious mechanisms, there  will usually be a correspondingly 
small influence on fabric development.  
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Fig. 2. (a) A yield constraint that is initially excluded from the yield surface is brought closer to the origin by continuously 
decreasing the CRSS value, for example as a result of changes in environmental factors. (b) The yield constraint eventually 
intersects the yield surface and causes a change in its configuration. (c) As the yield constraint continues to move toward the 
origin, vertices are created or modified, or disappear from the yield surface. There comes a point where the yield ccustraint 
can cause no further changes to the yield surface configuration even if the CRSS value is dropped to zero. The mechanism is 

then biased for as much activity as its geometry will allow. 
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THE CONCEPT OF CONFIGURATION SPACE 
AND ITS RELATION TO FABRIC DEVELOP-  

MENT 

Although the number of possible yield surface 
configurations is finite for a given material, this number 
may nevertheless be very large when the number of pos- 
sible glide systems is large, as in quartz. It is therefore 
useful to have a means of representing or  visualizing the 
whole complex of configurations and their relationships 
with each other, and the relative extent of the fields to 
which each configuration is relevant. It is convenient for 
this purpose to take an n-dimensional space, where each 
of the axes represents the value of the critical shear stress 
for one set of symmetrically equivalent glide systems for 
the material (referred to here as a symmetry set). The 
space is called configuration space since it can be divided 
into do~nain~, the points within which represent sets of 
relative critical resolved shear stress values that define 
particular yield surface configurations. Each domain of 
configuration space will lead to particular types of fabric 
for a given deformation. 

Only for simple materials is a complete description of 
configuration space practicable. This is because 
configuration space has as many dimensions as there are 
symmetry sets of glide systems, and it is a laborious task 
to examine even one yield surface configuration in 
enough detail to properly ascertain its properties in 
affecting fabric development. 

In the case of quartz, when only basal, prism and 
rhomh systems are considered, there are 33 individual 
glide systems when opposite senses of glide are not 
distinguished, even if symmetrically distinct (Lister et al. 
1978). Taking this grouping together with the grouping 
offered by the individual symmetry sets, there are eight 
individual independent sets of mechanisms. If the tri- 
gonal dipyramidal sets are also considered, the number 
rises to 11, with a total of 51 glide systems being 
examined. To establish all possible fabric transitions in 
such a material is an enormous task, beyond the avail- 
able capacity of most computer facilities, and it is there- 
fore necessary to proceed in a selective way with the aim 
of establishing the most important yield surface 
configurations for the material. 

Since the aim is to establish the effects on fabric 
development of a set of specified glide systems, there are 
four approaches that might be considered. 

(a) Seek to establish qualitative rules for predicting 
the main fabric features when particular glide systems 
are expected to predominate because their critical yield 
stresses have been made low relative to those of other 
glide systems. The systems are then energetically 
favoured for activation and will operate, as much as their 
geometry will allow, in relation to each particular strain 
situation. 

(b) Assume functional relations between the critical 
shear stresses of the various glide systems, relating them, 
for example, to the lengths of the Burgers vectors or to 
environmental variables, and then follow a curvilinear 
path through configuration space to intersect all 

domains of distinct configurations for which these rules 
are obeyed. For each configuration the type of fabric for 
a specified deformation would then be obtained by 
simulation. Unfortunately, the lack of knowledge on 
such functional relations hinders this approach. 

(c) Consider a small subset of glide systems only, so 
that it is possible to construct a two-dimensional section 
of stress space which orthogonally intersects the yield 
surface derived from this subset of mechanisms. The 
geometric form of the yield constraints can be deter- 
mined in this projection, and the effects of variation of 
critical yield values can be studied. For simple cases, crit- 
ical ratios of shear stresses can be readily determined for 
which changes in the configuration of this section of the 
yield surface take place. This approach is a useful one 
and is discussed in a foUowing paper. It can only be used 
in the simplest cases, and it lacks generality. 

(d) To proceed in a completely general fashion and 
consider specific, but nevertheless arbitrary, two- 
dimensional cross-sections of configuration space. With 
the help of a computer program the loci of changes in 
configuration of yield surfaces in this projection can be 
determined. Each field in the resulting diagram repre- 
sents the field of relevance for a particular yield surface 
configuration, and the effect of the configuration on 
fabric development can then be characterized in any of a 
number of ways. The importance of individual 
configurations and of the various fabric transitions in the 
two-dimensional section is thus directly determined, and 
the method is extren~ely powerful. However, there may 
be a great number of possible cross-sections that can be 
considered important and, as already mentioned, the 
proper characterization of the effects of individual 
configurations is a laborious task. Restrictions of real 
time and computer facility provide the main draw-back 
to this method. 

To describe configuration space is a lengthy proce- 
dure. We have principally used the fourth method. The 
problem quickly arises of how to decide which sections 
of the n-dimeusional configuration space are most 
important and, when the two-dimensional section is 
finally obtained, which portion of it should be charac- 
terized in detail for the fabric types and fabric transi- 
tions. There is no really satisfactory way to do this, but to 
some extent the second approach can be used. 

INDIVIDUAL GLIDE SYSTEMS A N D  THE 
EMERGING FABRIC 

We now consider further the role of individual sets of 
symmetrically equivalent glide systems in fabric 
development. The question arises whether, if a given 
glide system has a low critical resolved shear stress 
(CRSS) value relative to other systems, its activity will 
predominate and give rise to characteristic features in 
the fabric which can be used to recognize this activity. 
For example, it has been suggested that predominant 
activity of basal < a >  glide in quartz can be recognized 
from the nature of the fabric developed, with the basal 
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glide systems relatively easy to operate in comparison 
with other systems. 

Arguments based on the predominating influence of 
individual glide systems have been exploited by various 
workers (e.g. Bhattacharyya & Pasayat 1968, Wenk et 

al. 1973, Bouchez 1977). Such analyses generally 
attempt to relate the fabric characteristics, especially 
rotationally stable end-orientations, to the behaviour of 
single crystals. They draw on the observations that, for 
example, in an isolated single crystal undergoing slip on 
a single plane in uniaxial compression between flat 
frictionless pistons, the pole to the slip plane tends to 
rotate towards the shortening axis. In uniaxial extension 
of a long thin crystal the slip direction rotates toward the 
extension axis. When multiple slip occurs on 
crystallographically equivalent systems, the rotations 
tend to be towards orientations that symmetrically dis- 
pose the active planes with respect to the deformation 
a x e s .  

However, in carrying over these considerations to the 
polycrystalline situation, such as in quartzite, there are 
several complicating factors. 

(a) The individual crystal is no longer free of lateral 
boundary constraints and must undergo a deformation 
that is compatible with that of the surrounding crystals. 
In this application of the Taylor analysis, compatibility is 
ensured by the assumption of homogeneous deforma- 
tion, which introduces the Von Mises requirement of 
five independent slip systems if crystals undergo general 
strains. The existence of these lateral constraints 
immediately invalidates the strict application of models 
which apply the rotation trends shown by isolated crys- 
tals to the polycrystalline situation, and raises the ques- 
tion in general of the extent to which rotation trends will 
be affected by activity of other deformation mechanisms 
as required for intra-granular strain compatibility. 

(b) The active glide systems that are required to 
accomplish the deformation may not all be symmetric- 
ally equivalent. Hence relative CRSS values enter into 
consideration in the selection of the active glide systems. 
However, it cannot be assumed a priori that, if one set of 
glide systems is assumed to have si~ificantly lower 
CRSS than all other sets, the glide system in the set 
oriented for highest resolved shear stress will be the 
most active glide system. This is commonly true but the 
relative activity of the various systems depends strongly 
on the geometry, and a low CRSS value implies only that 
the system is biased for as much activity as the geometry 
of the situation will allow. The activity of the system is 
determined by the orientation of the grain in relation to 
the imposed strain increment, by which glide systems are 
simultaneously active to allow this strain increment, and 
by the type of strain increment. There may be no 
changes in relative mechanism activity over quite sig- 
nificant ranges of relative CRSS values. 

(c) At moderate strains, the orientations of many of 
the crystals will not yet have become close to their end- 
orientations. The fabric will therefore also tend to reflect 
intermediate stages in the reorientation of crystal axes 
towards end-orientations. Thus, the preferred orienta- 

tions actually observed will depend on the relative rates 
of rotation, as well as on the directions and end positions 
for these rotation paths. 
The pattern of reorientation trajectories of the crystal 
axes is therefore the most important determinant of the 
developing crystallographic fabric, and more important 
than the actual end-orientations themselves. The trajec- 
tories determine not only what the fabric will be after 
large strains, but also how it will develop from given ini- 
tial orientation distributions. In this connection, inverse 
rotation diagrams (Lister et al. 1978) have fundamental 
importance since they contain the basic information 
from which reorientation trajectories can be recon- 
structed. Cainan & Clews (1950, 1951a, b), attempted 
to derive reorientation trajectories by qualitative argu- 
ments and to infer from them the nature of resulting pat- 
terns of preferred orientation. Their arguments were 
based essentially on isolated crystal behaviour, some- 
what modified by the concept that the principal stress 
axes will tend to be reoriented as rapidly as possible 
within each grain so that the critical shear stress is 
achieved simultaneously on a large number of glide sys- 
tents. In the present study we obtain reorientation 
trajectories quantitatively derived using the Taylor- 
-Bishop-Hill model for specific deformations. 

Experience with model quartzes shows that the pat- 
tern of reorientation trajectories can be quite complex. 
The paths do not in general follow great circles but can 
be markedly curved, and even the sign of curvature may 
change along the path. A given reorientation trajectory 
may be entirely within a sub-area or domain in the 
inverse pole figure, this domain having a boundary that 
is not crossed by any of the reorientation trajectories 
lying within it. The possibility of multiple end- 
orientations also follows as a corollary of the existence of 
these domains. 

The relative rates of reorientation can vary widely. As 
a result some areas of the inverse pole figure may be 
practically cleared of points after relatively small strains, 
while adjacent areas correspondingly develop 
concentrations. Some of these concentrations may be 
transient, resulting from variation of rotation rate or 
from convergence of the reorientation trajectories, 
rather than from approach towards a rotationally stable 
end-orientation. For these reasons it is inadequate to 
discuss fabrics purely in terms of end-orientations, espe- 
cially at moderate strains. 

The end-orientations that do develop in the fabric 
simulations using the Taylor-Bishop-Hill analysis are 
commonly found in fact to be one of the two general 
types already mentioned in connection with isolated 
single-crystal behaviour; either putting an easily acti- 
vated glide system into an orientation unfavourable to 
its further operation or disposing the most active glide 
systems symmetrically in relation to the deformation 
axes. Apart from rotationally stable end-orientations a 
situation can also be approached in which the crystal 
axes continuously gyrate (Lister et al. 1978, fig. 4). 

The consideration of fabric transitions can therefore 
be reduced to determining distinctive changes in the 
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topology of the patterns of reorientation trajectories as 
the relative CRSS values for different glide systems are 
varied. Sometimes the changes are extensive. In other 
cases the changes may be confined to small areas in the 
inverse rotPtion diagram. However, even in this second 
case, quite extensive changes in the inverse pole figure 
may follow after substantial deformation. 

APPLICATION TO FABRIC TRANSITIONS IN 
QUARTZITE 

In considering fabric transitions in a specific material, 
it is first necessary to list all the glide systems to be consi- 
dered. However in the case of quartz, the glide systems 
that operate in nature are not well known and laboratory 
studies are still rather inadequate. Therefore we have 

Table 1. Glide systems used in this study. Miller indices are used, 
referred to the at, a 2 and e-axis of a hexagonal unit cell 

Basal 

Prism 

( - )  Rhomb 

( - )  Rhomb 

Gl ide p lane Slip direction Label 

0 0 1 1 0 0 at 
0 0 1 0 1 0 as 
0 0 1 - 1  - 1  0 as 

- 1  0. 0 0 1 0 a 1 
0 1 0 1 0 0 as 
1 - 1  0 - 1  - 1  0 a s 

0 1 1 1 0 0 a 1 
- 1  0 1 0 1 0 as 

1 - 1  1 - 1  - 1  0 as 

0 1 1 0 - 1  1 © -  as 
0 1 1 - 1  - 1  1 © + as 

- 1  0 1 1 1 1 c - a  s 
- 1  0 1 1 0 1 ¢ + ~  

1 - 1  1 - 1  0 1 © -  a~ 
1 - 1  1 0 1 1 ¢ +  as 

a b 

selected a limited group of systems (Table 1) which will 
serve to demonstrate some of the fabric transitions that 
are predicted by the Taylor-Bishop-Hill theory. Note: 

(a) Only the ( - )  rhomb systems have been studied in 
detail here. The case of the (+)  rhomh in place of the ( - )  
rhomb may be obtained simply by a mirror reflection 
across the plane containing c and a in the inverse pole 
figure. Results for other systems will be summarized 
elsewhere. 

(b) The CRSS values for opposite senses of shear 
have been considered equal for this work, regardless of 
whether or not this is demanded by symmetry. 

A computer program was prepared to help with the 
difficult task of constructing two-dimensional sections of 
n-dimensional configuration spaces. The program 
delineates the boundaries across which changes in yield 
surface configuration occur. Then a technique which we 
term growth parameterization was used to .determine 
parameters and extents of the configuration change 
boundaries. If the technique is applied in the correct 
manner and enough cpu t ime is available most fabric 
transitions will be detected by this method. If a 
configurational change affects only a very small subset of 
orientations it could escape attention, but in this case 
one can safely assume such boundaries to be unimpor- 
tant. 

Once a transition diagram has been prepared it 
remains only to characterize the individual yield surface 
configurations, each configuration occupying one poly- 
gonal domain on the diagram. Often there are a 
considerable number of configurations to be examined. 
It requires least effort to calculate inverse rotation diag- 
rams for this purpose, but one should b~ aware that some" 
configurations, identical under axially symmetric shor- 
tening, produce different fabrics when subjected to 
progressive plane strain. 

imposed 
strain 

increment 
vector 

sur face 

~ tlVlty On mechanism 
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Fig. 3. Hypersensitive behaviour occurs when large rotations are predicted by the analysis for small strains. (a) An inverse 
rotation diagram illustrates the phenomenon. Lattice rotations are calculated for a 10% axially symmetric shortening, 
accommodated by the ( - )  rhomb <c  + a:> systems alone. (b) The phenomenon results when vertices of the yield surface 
have considerable angularity and, in consequence, mechanism activity must be high in comparison with the magnitude of the 

imposed strain increment. 
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R O L E  OF T H E  SYSTEMS W I T H  < c  + a >  
B U R G E R S  V E C T O R  

A crystal of quartz deforming solely by slip can only 
undergo certain types of strain with respect to crystal 
axes if only glide systems with < a >  and < c >  Burgers 
vectors operate. General strains cannot be achieved 
unless at least one of the active glide systems has a slip 
direction and slip plane oblique to both ¢- and a- axes. 
Systems such as the ( - )  rhomb <c + a>  systems fulfil 
this requirement, and there are five independent glide 
systems in this symmetry set alone. Paterson(1969) 
mistakenly listed only three independent systems 
because only one of the two glide directions in each glide 
plane was taken into account. 

Simulations of fabric development with the Taylor- 
-Bishop-Hill analysis are only possible with the glide 
systems listed if <e  + ' a >  systems are not excluded from 
operation. This arises because the yield surface is not 
bounded in all directions normal to the hydrostatic stress 
axis unless these systems are included. However, when 
one set of rhomb <c  + a>  systems defines the yield sur- 
face by itself, a phenomenon termed 'hypersensitivity' is 
observed (Fig. 3a). For only small strain increments very 
large rotations of the crystal axes take place. Rotations 
of 6-8* for each percent shortening are predicted. The 
phenomenon is caused by some of the vertices of the 
yield surface having marked angularity, so that there is 
high activity on glide systems but the resulting strains 
almost cancel out (Fig. 3b). Hypersensitivity causes 
computational problems. 

Another effect related to hypersensitivity is seen 
when < a >  and <¢ + a>  systems operate in conjunc- 
tion. The CRSS values on the < a >  systems have to be 
several times higher than the CRSS values on the <c  + 
a>  systems before they are excluded from the yield sur- 
face, and thus from operation. These effects arise 
because the <c  + a>  systems are not geometrically 
suited to accommodate strain in particular orientations. 

Because the <c  + a>  systems are geometrically 
necessary to allow general strains, it is not possible to 
exclude them from operating during computer simula- 
tions. The <c  + a >  systems can be made one thousand 
times more difficult than any other system but they will 
still operate. Even if the CRSS value is set so that the <c  
+ a>  systems have minimum activity, the end- 
orientations that develop still reflect their influence. For 
example, a 25* girdle formed during axially symmetric 
shortening disposes the rhomb {10I 1} and {0111} planes 
symmetrically with the basal {0001} systems, equally 
inclining them to the axis of shortening. When <e + a>  
systems with glide planes more steeply inclined to the c- 
axis are used (e.g. the trigonal dipyramids {2I I 1}) then 
the result is small-circle girdles with correspondingly 
greater opening angles. High strength of <c  + a>  sys- 
tems in this analysis leads to stress heterogeneity. In 
reality, the material surrounding any particular grain 
would not be strong enough to provide constraint suffi- 
cient to withstand large stress gradients. Heterogeneous 
strain would help to circumvent the problem, for 

example by kinking or allowing hard grains to remain as 
relatively undeformed augen, so that difficult glide sys- 
tems need not operate. 

Evidence to date regarding the existence of the <c  + 
a>  Burgers vector comes mainly from experiments and 
is reviewed by Morrison-Smith et al. (1976) and Lister et 
al. (1978). Twiss (1976) suggests < c '  2a> dislocations 
from slip trace data. Theoretical considerations about 
the large amount of non-core elastic energy involved 
seem to argue against such dislocations, but the rele- 
vance of such arguments to silicates is not clear. 

The inclusion of the <c  + a>  systems cp. nstitntes a 
point of difficulty in assessing the relevance of this 
application of the Taylor-Bishop-Hill model. Certainly, 
in considering alternative models, heterogeneity of 
deformation must be one of the factors studied from the 
point of view of relaxing the necessity to invoke 'hard' 
glide systems in order to fulfil the Von Mises require- 
ment. Other deformation mechanisms, such as disloca- 
tion climb (Paterson 1969), may also be included. 

COMPETITION BETWEEN <c + a>  AND < a >  
SYSTEMS 

Competitions between systems with < a >  and <c  + 
a >  Burgers vector always occur when using the Taylor- 
-Bishop-Hill analysis, so these competitions are of first 
interest. 

Basal  < a >  against ( - )  rhomb <c  + a> systems 
The first fabric transition takes place when the basal 

systems have a CRSS value 4.1486 times that for the 
rhomb <c + a>  systems. 

Significant effects are absent until the next transition 

9. 

4 .  

[ii! ̧  ~ 

i ~ ~ii!i i!/~ 

1 2 

Easy basal <a) 

rea~ cry / 

3 4 5 6 7 8 9 

CRSS value for {0111~ <c,a> 

Fig. 4. Transition diagram for the {0001} <:a> and {01i l}  < c  + a >  
systems. Fabric transilions take place at critical CRSS ratios. When 
basal systems are excluded from the yield surface, hypersensitive 
behaviour results. Configurations A ~ and A 2 are almost identical. 

Ornamented  areas represent  similar configurations. 
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V,~ ~. A~-...'~, 

i a b 

Fig. 5. Inverse rotation diagrams for 10% axial shortening illustrate 
reorientation trajectories for mnfigurations A' (a) and B (b) of Fig. a. 
When these configurations are applied to model quartzites subjected 
to axially symmetric shortening, point maxima of c-axes develop about 
the axis of shortening. The upper hemisphere of an equal-area projec- 
tion is used, with positive forms on the left. In these and other diagrams 
the dot represents the orientation and the strokes the tangents to the 
reorientation trajectories. Rotations for 10% axial shortening are 

shown. 

at a CRSS ratio of 8.2973 (Fig. 4). Basal systems are 
excluded at a CRSS ratio exceeding 16.595, and then 
hypersensitive behaviour  results. Inverse rotat ion diag- 
ram~ have been prepared  for  axial symmetr ic  shortening 
for each of these regions (Fig. 5). Regions A 1 and A 2 are 
almost identical. Configurat ion B is sensitive and high 
rates of rotat ion are predicted. 

Pr/sm {1010} < a >  against  ( - )  rhomb {0111} < c  + a >  
systems 

Compet i t ion of pr ism < a >  systems against rhomb < e  
+ a >  systems leads to a similar pa t tern  of transitions 
(Fig. 6). The  first transition occurs at a < a > / < e  + a >  
CRSS ratio of 1.934 but  no significant effect results. 
Again, at the second transition (CRSS ratio 2.7473) an 
important  change occurs, as seen in the inverse rotat ion 
diagrams (Fig. 7). A minor  change takes place at CRSS 
ratio 6.5313 and, finally, prism < a >  systems are exc- 

91 
8~ 

~ 6 
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$ 

3 

D' J 
iEi--'~ !i i i: 

iii!!:::::i!iii! ,.:IITIIIIITI 
. . . .  27 

1 2 

!ii. 
C' 

REGION OF 
MAXIMUM 
PRISM <a> 

3 4 5 6 7 8 9 10 
CRSS value for (-) r h o m b  <£+j l> 

Fig. 6. Transition diagram for the {10i0} < = >  and {01 i l }  <¢ + =L> 
systems. Ornamented areas represent ~imilar configurations. 

c 0 

--, J /  

, / / .  " " -  I I I / / / ~ ' ¢  

A ~ L - - " "  ~ a I ~ k--~L''''~' b 

Fig. 7. Inverse rotation diagrams for 10% axially symmetric shortening 
for configuration Ct (a) and for configuration D 1 (b) illustrate the two 
basically different patterns of reorientation trajectories for the transi- 

tion diagram in Fig. 6. 

luded f rom operat ion when CRSS ratios exceed 9.2788. 
Hypersensi t ive behaviour  then ensues. 

( - )  rhomb {0111} < a >  against  ( - )  rhomb {0111} < c  + 
a >  systems 

The results of the compet i t ion be tween rhomb < a >  
and < c  + a >  systems are rather  unusual (Fig. 8), as are 
the effects of rhomb < a >  glide on the whole. Although 
transitions take place at < a > / < c  + a >  CRSS ratios of 
1.4867 and 2.9738, no effects can be observed in the 
inverse rotat ion d iagram for each of the three yield sur- 
face configt~.ations. They  are all hypersensitive and 
identical to the inverse rotat ion diagram for  the < e  + a >  
systems alone (Fig. 3a). This is probably  because the 

1 0  t m t ' *  I m l  J l ' * l  1 1 ' 1 '  I 1 '  t . . . . .  I t J  I I i l l  I I I l ~ t l l l t l l  I 1 1  

/ ,  gL. . 

0 2 4 6 8 10 
CRSS {01tl} (c+a> 

Fig. 8. Transition diagram for the competition between {01 [ 1} < a >  
and {0111} <¢ + a> systems. All the CRSS give rise to hypersensitive 

yield surface configurations. 

rhomb < a >  systems have a particular geometrical  rela- 
tion to the rhomb < e  + a >  systems. The  strains (and 
lattice rotations) are related thus: 

~IE,  - ~ 1 ~  = ~ 3 ~ ,  

where ~1 and % specify the activities on the < c  + a >  and 
< a >  systems, respectively, and where n is the glide 
plane normal,  and ! the slip direction: 

E1 = ½ (r~lj + nyli)l for (0111) [¢ + a3], 
E2 ffi ½ (~ly + nyl.02 for (0111) [e - a2], 
E3 = ½ (nily + nyl.03 for (0111) [ - az ] .  

These linear dependence  relations arise because there 
are three possible slip directions in each slip plane. 
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Fig. 9. (a) A model simulation for prism < c >  and ( - )  rhomb < c  + a >  
systems, CRSS ratio 1:3, for axially symmetric shortdning produces a 
c-axis girdle inclined 65" to the shortening axis and the inverse rotation 
diagram. (b) Addition of prism < a >  to the competition, with a CRSS 
value equal to that on the < c >  systems, results in inverse rotation 
diagram. A seemingly minor change to the reorientation trajectories 
has taken place, but this causes a big change in the developed fabrics. 
For plane strain a maximum of e-axes now forms about the axis of 
extension, and for axial shortening a-axes align parallel to the axis of 
shortening. Thus a fabric typical of prism < c >  gfide forms only with 
prism < a >  glide, indicating that use of simple end-point criteria is not 

possible with the Taylor-Bishop-Hill analysis. 

Analogous effects occur with the prism < a >  and < c >  
systems, and the prism <c  + a>  systems. 

Further aspects of the influence of prism < a >  systems 
It is now convenient to consider the influence exerted 

by prism < a >  systems on fabric development. These 
systems often have very high activity in the majority of 
grain orientations, without seeming to affect the fabric 
that develops or, at least, affecting the fabric that 
develops in a subtle fashion only. Often end- 
orientations are populated that reflect the influence of 
other glide systems more difficult to activate. 

These effects arise because of the unusual geometry of 
prism < a >  systems. They are systems difficult to align in 
unfavourable orientations for continued operation, and 
because of their cylindrical geometry have a distinct ten- 
dency to start the crystallographic axes gyrating. 
Because this is so, end-orientations more characteristic 
of other systems tend to be populated, compromising the 
overall rate of energy dissipation by minimizing activity 
on other systems. The predictions of the Taylor-  
Bishop-Hill analysis are at variance with those of the 
model of Calnan and Clews as, as applied by Bhat- 
tacharrya & Pasayat (1969), because of these 
phenomena. 

R O L E  O F  T H E  P R I S M  < c >  SYSTEMS 

Prism < c> glide with difficult ( - )  rhomb {0111} <c  + 
a >  glide results in a maximum concentration of c-axes 
65 ° from Z, for axial shortening (Fig. 9a). This end- 
orientation aligns prism and rhomb planes symmetri- 
cally to the shortening axis. However, when prism < a >  
glide is allowed (Fig. 9b) a maximum forms at high 
angles to the axis of shortening. The end-orientation 
populated places prism < c >  in the orientation most 
urdavourable for continued operation, and the fabric by 
~imple criteria might be classKied as characteristic of 

prism <c>.  By the same token, the influence of prism 
< a >  is not visible. Because of a small adjustment in the 
pattern of reorientation trajectories a large change in the 
pattern of preferred orientation develops. 

The competition between basal < a >  and prism < c >  
systems has an important effect on fabrics because the 
rotations produced by the basal systems are in exactly 
the opposite sense to the rotations that result when the 
prism systems operate. Basal systems rotate the c-axis 
towards the axis of shortening. Prism < c >  systems lead 
in many cases to c-axis maxima near the axis of exten- 
sion. When both systems operate simultaneously diffuse 
c-axis fabrics tend to result. 

C O M P E T I T I O N  B E T W E E N  B A S A L  A N D  P R I S M  
< a >  SYSTEMS 

Competition between individual < a >  systems and 
various <¢ + a >  systems is easy to document and dis- 
cuss. However, iroplieit in a discussion concerning basal 
< a >  and ( - )  rhomb <c  + a>  systems is an assumption 
that the rhomb or prism < a >  systems have high CRSS 
values. This might not be a reasonable assumption, thus 
competitions between many systems at a time must be 
considered if 'realistic' portions of configuration space 
are to be examined. 

First, the competition of the ( - )  rhomb <¢ + a>  sys- 
tems with {0001} < a >  and {1010} < a >  systems is consi- 
dered. This section is extremely complex and extends a 
considerable distance from the or ion before regaining 
the simplicity present in the competitions between only 
one < a >  glide system set and one <¢ + a>  set. The 
transitions discovered by Chin & Mammel (1970) form 
only a subset of the total. The configurations closest to 
the origin give rise to the fabrics in which the basal and 
prism < a >  glide systems are most significant. 

There are several points that may be understood 
about these diagrams. Firstly, they show that if the yield 
stress on either of the < a >  glide systems is increased, 
then eventually it is excluded from operation. In these 
sections of configuration space the only transition 
boundaries are lines parallel to the axis, indicating 
transitions involving the other < a >  system with the <c  
+ a>  system. A great deal can be learnt about the way 
vertices behave on the yield surface. For example, points 
where several transition boundaries converge define 
CRSS values which activate many dislocation systems 
simultaneously. 

The pattern of fabric transitions for this competition is 
summarized by showing it on simplified transition diag- 
rams, the c-axis pole figures for axially symmetric shor- 
tening (Fig. 10a) as well as for plane strain (Fig. 10b). 
One point is that, for plane strain, c-axis fabrics form 
with maxima at the ~/-axis, for a particular group of 
configurations. This end-orientation is commonly attri- 
buted to the influence of prism < a >  systems. However, 
as can be seen, prism < a >  systems are rather difficult 
and at the next transition boundary they are excluded 
from operation. 
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CO 

A 

.8 

\ 

D 2 

ONLY <c+a> 
SYSTEM  
OPERATING - 

B 1 

E 

8, 

A 2 

H CRSS value for 

{prism} <a> 

G 
all CRSS values relative to CRSS on the 
(-) rhomb (c+a~> systems 

Fig, lO(b) 

Fig. I0. Trmlsition diagram for the {0001} <~>, {10i0} <a> and (-) rhomb <c + a> systems, This diagram extends a 
considerable distance from the orig~n before either of the <a> mechanism sets is excluded and the simplicity of two- 
din~nsional competition between one set of <a> mechanisms and the <c + a> systems is regained. The pattern of fabric 
transitions is illustrated for model quartzites of 250 grains subjected to 65 % shortening in (a) axially symmetric shortening or 
in (b) plane strain. The axis of shortening is horizontal for each diagram and the extension axis is vertical. Pole figures are on 
the lower hemisphere equal.area projeo.ion. The same applies to the layout for the following diagrams. Only e-axis pole 

figures are shown. The axis of shortening is E-W and the ~ of extension is N-S, 
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Fig. 11. Transition diagram for the competition between {0001} < a > ,  {01i 1} < a >  and {01i 1} < e  + a >  systems. The most 
important domains are shown. Model quartzites consisting of 250 grains have been subjected to 65% shortening in (a) 
axially symmetric shortening and in (b) plane strain to illustrate the fabric transitions. Only c-axis pole figures are shown as 

for Fig. 10. 
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COMPETITION BETWEEN BASAL AND ( - )  
RIIOMB < a >  SYSTEMS 

The competition between {0001} and {0111} < a >  
systems is rather unusual. The pattern of transition 
boundaries is related in a straightforward manner to the 
individual competition between {0001} < a >  and {01I 1} 
< a >  systems with the {0111} <c + a>  systems. The 
region of CRSS values allowing joint operation of the 
< a >  systems is rather large. Fabric variation is shown 
for plane strain and axially symmetric shortening (Fig. 
1 la  and b). 

SIMULTANEOUS COMPETrrlON BETWEEN 
BASAL, PRISM A N D  RHOMB < a >  SYSTEMS 

An important simplification of configuration space 
Up to this point no more than three individual 

mechanism sets have been examined at any one time. 
The configuration spaces have all been two- 
dimensional, for example plotting the CRSS ratio for 
{0001} <a>/{01 I1} <c  + a>  systems against the CRSS 

ratio for {101X)} <a>/{0111} <c + a> systems. This 
means that the computer programme should have disco- 
vered every one of the possible yield surface configura- 
tions in the configuration spaces. Therefore it is possible 
to make precise statements as to the predictions of the 
Taylor-Bishop-Hill analysis for total fabric variation 
with the competitions: 
(i) {0001} <a>, {1010} <ca> and {0111} <(  + a>; 
(ii) {0001} <a>, {0111} <a> and {0111} <e + a>. 

However complex the above transition diagrams may 
he, they still involve implicit assumptions that the CRSS 
values on glide systems other than those included are 
sufficiently high to prevent operation of these additional 
systems. This may still not be a reasonable assumption, 
and therefore even more complex configuration spaces 
must be considered. 

Extending configuration space beyond two- 
dimensions means that there are hundreds of yield sur- 
face configurations to be examined, and the task of 
describing predicted fabric variations becomes 
correspondingly difficult. Configuration spaces of up to 
7 degrees of freedom have been examined but for 
reasons of space this work will confine itself to reporting 
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Fig. 12. The trml~igion diagram for the four sets of systen~ {0001} < a > ,  {lOi0} < a > ,  {01 i 1} < " >  and {0111} <¢  + a> .  The 
ratios between the CRSS values on < a >  systems alone determines the competition, and this reduces the 3 degrees of freedom 
in the competition effectively to 2 degrees. This enables all fabrics for this four-way competition to be portrayed on one two- 
dimensional diagram. The fabric trRr~itions are illustrated for model quart~tes of 250 grains subjected to 65 % shortening in 
(a) axial symmetric shortening and in (b) plane strain. Note the increasing concentratiom of e-axes at r i g h t - a ~ e s  to Z as 
prism glide becomes progressively easier. It should be noted that these diagrams are in fact three-dimensional, since the CRSS 
value on the <¢ + a >  systems has also to be considered. However it has been shown that as long as the ratio of CRSS values on 
the < a > / < r  + a >  rhomb systems does not exceed 1.4867, the positions of the boundaries on the u-ansition diagram do not 
change, and the CRSS value on the <¢ + a >  systems has no influence on fabric development. Only t-axis pole figures are 

shown, as for Fig. 10. 

the results of the study of the three-dimensional  space 
defined by the following mechanism subsets: 

(i) basal {0001} < a > ;  
(ii) prism {1010} < a > ;  

(iii) ( - )  rhomb {0111} < a > ;  
(iv) ( - )  rhomb {01]1} < c  + a > .  

Once configuration spaces of greater  than 2 degrees of 
f reedom are examined, there may  be in some comer  of 
the configuration space a yield surface configuration 
which may produce an interesting fabric, but  which is 
never  discovered. It is no longer possible to make precise 
statements about  the total fabric variation predicted by 
the Taylor-Bishop-Hi l l  analysis because the full range 
of variation of the effects of different sets of CRSS 
values has not been fully explored. 

This problem would be far more  serious, except that it 
is possible to recognize homeomorphic  relations be- 
tween different two-dlmensional sections. These prob- 

ably result f rom the linear dependence relations that are 
possible between < a >  and < c  + a >  systems on the 
rhomb planes. It has been  found that for the two- 
dimensional sections examined, as long as the CRSS 
ratio on the ( - )  rhomb < a > / < c  + a >  systems does not 
exceed 1.4867 (the value at which the first transition 
takes place in the pair-wise competit ion in Fig. 8), then 
the CRSS value on the < c  + a >  systems has no effect at 
all on  the positions of the transition boundaries,  or on 
the yield surface configuration. Some minor boundaries 
appear  or disappear as the CRSS value on the < c  + a >  
system is varied, but these boundaries appear  to be 
associated only with trivial changes. This means that, as 
long as the condition above is obeyed,  the yield surface 
configuration is determined solely by the ratios of the 
CRSS values for  the < a >  gfide systems, and that the 
CRSS value for the < c  + a >  glide systems has no effect 
at all on fabric development.  
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The transition diagram for these four systems should 
be compared with the transition diagram for {0001} 
< a > ,  {10i0} < a >  and {0111} < e  + a >  systems (Fig. 
10). This transition diagram excludes the operation of 
{0111} < a >  systems and therefore assumes the rhomb 
< a > / < c  + a >  CRSS ratio exceeds 2.9738. Figure 10 
therefore applies to most of the configuration space for 
the four sets: {0001} < a > ,  {1010} < a > ,  {0111} < a >  
and {0111} < c  + a >  systems. What is interesting is the 
CRSS limit value for exclusion of {1010} < a >  systems as 
the CRSS value on the {13001} < a >  systems drops to 
zero. With operat ion of {0111} < a >  systems excluded, 
this value is defined by a CRSS ratio of 1.9040 on the 
{1011} <a>/{0110} < c  + a >  systems. However ,  
including the rhomb < a >  systems, allows the prism 
< a >  systems to be excluded at progressively lower 
CRSS ratios. The CRSS limit value for exclusion of 
prism < a >  systems is given by the equation: 

~'p ~ 0.7800 % + 1.2807 ~-,, 
where % ~ 1.4867 I" k, 

xp = CRSS for {1010} < a >  systems, 
Xb = CRSS for {0001} < a >  systems, 
x, -- CRSS for {0110} < a >  systems and 
"r k = CRSS for {0111} < e  + a >  systems. 

Configurations without rhomb < a >  can be compared 
with configurations with rhomb < a > .  In many cases 
identical configurations can be located, as far  as can be 
seen by comparison of inverse rotation diagrams for 
axially symmetric shortening. The rhomb < a >  systems 
in these cases can be said to alter the region of CRSS 
values in which a particular fabric develops, without 
seeming to affect the fabric. It also means that the same 
yiel.d surface configuration applies over a very large 
range of CRSS values. However ,  as pointed out above, 
the presence of rhomb < a >  glide also prevents par- 
t i tular fabrics f rom developing. These effects mean that 
the transition diagrams for the four systems {0001}, 
{1010}, {0111} < a >  and {0111} < c  + a >  can be simply 
represented. As long as the CRSS ratio on the rhomb 
< a > / < e  + a> systems does not exceed 1.4867, the 
transition diagram for the above systems has only 2 
degrees of freedom. These results were checked for rrset  
at 4.00, 3.00, 1.00 and 0.10 with a" k = 3.00 (arbitrary 
units) and hold except for some minor deviations. 

The ability to represent fabric variation from four sets 
of mechanisms on one two-dimensional diagram is a 
remarkable and unexpected simplification of what 
appeared to be a rather  difficult problem. 

The transition diagram is shown in Fig. 12 with the 
important  domains defined. A summary of fabric varia- 
tion is prepared showing e-axis patterns for axially sym- 
metric shortening (Fig. 12a) and for plane strain (Fig. 
12b). 

R E L A T I O N S  B E T W E E N  D E F O R M A T I O N  
FABRICS A N D  E N V I R O N M E N T A L  V A R I A B L E S  

To some extent, variation in relative CRSS values 
might allow simulation of different deformation condi- 

tions. In this case different regions of configuration 
space may represent specific environments.  There  are 
problems involved in relating CRSS values to real 
rheological behaviour but- some of these can be over- 
come as long as, for any particular set of environmental  
variables, there are resolved shear stresses beyond 
which activity on individual glide systems increases 
markedly. This means that the mathematically abrupt 
fabric transitions can be smeared out over a transitional 
zone. 

Although there are no definite functional relations 
known between yield stresses on various glide systems, 
some statements can be made about relative strengths. 
This aspect was discussed briefly by Lister et al. (1978). 
On the basis of experimental  work and theoretical 
considerations, it is expected that the yield stresses for 
glide systems with long Burgers vectors < c  + a >  will be 
greater than for systems with short vectors. Glide on the 
basal < a >  and prism {1010} < a >  systems seem to be 
the most definitely known deformation mechanisms in 
quartz, so it is difficult to consider a yield surface 
configuration as 'realistic' if glide on these two symmetry 
sets is explicitly excluded by the choice of CRSS values. 
In this way some restrictions as to the most 'relevant '  
sections or portions of sections of configuration space 
can be made. 

Certain regions of configuration space will not be 
relevant to real conditions. For  example the experiments 
of Baeta & Ashbee (1969a, b, 1970a, b) suggest < c  + 
a >  systems are three times harder  than < a >  systems. 
This supports theoretical arguments (Lister et al. 1978) 
based on the relatively long length of the < c  + a >  Bur- 
gers vector. Thus regions of configuration space in which 
CRSS values on < c  + a >  systems are relatively high are 
thought most likely to allow simulation of naturally 
occurring fabrics. This rule appears to be obeyed. 

C O N C L U S I O N  

It is difficult to apply the Taylor-Bishop--Hill analysis 
to quartz. Apar t  from the obvious physical limitations of 
the model, there is uncertainty regarding the actual glide 
systems that operate  during natural quartz deformation. 
The role of the < c  + a >  Burgers vector glide systems 
remains as one of the important  but unsolved questions. 
In applying the analysis it is necessary to specify a list of 
dislocation glide systems, and so that the Von Mises 
condition is satisfied, systems with < e  + a >  Burgers 
vector must be included. In reality heterogeneous strain 
might remove the necessity for the crystal ever to invoke 
'hard'  glide systems, or alternative deformation 
mechanisms might operate.  An alternative model needs 
to be formulated. However  in terms of developing an 
understanding of deformation fabrics in quartzite it is 
useful to at tempt to document  the predictions of the 
Taylor-Bishop--Hill analysis, using glide systems disco- 
vered by experiments with quartz. 

There  is a large variation in deformation fabrics pre- 
dicted by the Taylor-Bishop-Hil l  analysis for the given 
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set of d is locat ion glide systems. This  pape r  character izes  
the  fabric  t rans i t ions  b e t w e e n  some  of these  fabrics for 
the fol lowing groups of systems: 

(i) basal  {0001} < a > ;  
(ii) p r i sm {1010} < a > ;  

(iii) ( - )  r h o m b  {1011} < a > ;  
(iv) ( - )  r h o m b  {1011} < c  + a > .  
T h e r e  are 3 degrees  of f r e e d o m  possible  in  the  assign- 
m e n t  of re la t ive  CRSS values.  However ,  the  p r o b l e m s  of 
explor ing  such a conf igura t ion  space have b e e n  r e m a r k -  
ably s implif ied by the  discovery of h o m e o m o r p h i c  re la-  
t ions  b e t w e e n  dif ferent  two-d imens iona l  sect ions of this 
space,  so tha t  all of the  fabric va r i a t ion  pred ic ted  by  the  
T a y l o r - B i s h o p - H i l l  analysis  for  this complex  system can 
be  r ep re sen t ed  o n  rela t ively few t w o - d i m e n s i o n a l  

pro jec t ions .  
Di f fe ren t  regions  of conf igura t ion  space might  be  

appropr ia te  to s imula t ing  the effects of diff. e r en t  geolog-  
ical condi t ions .  T h e r e  are difficulties in  re la t ing  CRSS  
values  to  real  rheological  behav iour ,  bu t  some of t h e s e  
p rob l ems  migh t  be  ove rcome  by smear ing  ou t  the  

ma themat i ca l ly  ab rup t  fabric t ransi t ions .  Never theless ,  
in  a t raverse  across a m e t a m o r p h i c  t e r ra in  fabric  t rans i -  

t ions  are  likely to take  place over  shor t  distances,  and  
these  t rans i t ions  should  no t  be  t a k e n  to necessar i ly  con-  
s t rue  ab rup t  changes  in  e n v i r o n m e n t a l  var iables .  Fabr ic  
t rans i t ions  take  place ab rup t ly  e v e n  w h e n  CRSS  values  
vary  smoothly .  However ,  ff the fabric t rans i t ion  coin-  
cides with a m a j o r  s t ruc tura l  e l e m e n t  the possibi l i ty of a 

tec tonic  d i scon t inu i ty  should  no t  be over looked .  
The re  are several  e n d - o r i e n t a t i o n s  for quar tz  pre -  

dicted as a resul t  of this work.  T h e  actual  m a x i m a ' a r e  
d e t e r m i n e d  in o r i en ta t ion ,  m a g n i t u d e  and  in tens i ty  

d i s t r ibu t ion  by the  d e f o r m a t i o n  his tory and  the ini t ial  
o r i en t a t i on  d is t r ibut ion ,  as well as by  the  dis locat ion 
glide systems active and  the i r  re la t ive  abil i t ies to 
opera te .  However ,  the concep t  of e n d - o r i e n t a t i o n s  and  
the  e n d - o r i e n t a t i o n s  p red ic ted  l end  s t rong  suppor t  to 

the  presen t ly  ou t -o f - f avour  concep t  pu t  forward  by  Fa i r -  
ba i rn  (1949)  a n d  Sande r  (1950)  tha t  there  are several  
possible  discrete and  dis t inct  m a x i m u m  or i en ta t ions  for 
na tu ra l  quar tz  c-axis fabrics. 
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